SLATE™

Peer to Peer BACnet Configuration
Introduction

This article explains how to configure SLATE BACnet communication in order to pass data between SLATE systems. When using BACnet, it is important to remember that safety functions cannot be performed over BACnet (or any other communication protocol) in SLATE; however, information about safety parameters such as Limit thresholds can be.

For those applications where there are multiple SLATE systems at work and information needs to be shared between them, such as lead/lag boiler configurations or those requiring similar sensors (i.e. outdoor temperature sensors), BACnet is an easy way to get data moving between systems.

To begin, we need to consider the wire sheet and whether the data point is an input to the wire sheet from another SLATE device or is an output to be read by another SLATE device:

- Wire sheet inputs require BACnet binding registers be used (instead of a Network Setpoint block or Network Input block). These are special registers in the SLATE Base Module which facilitate peer to peer communication with other SLATE devices. Each SLATE device can receive up to 20 BACnet messages when communicating to other SLATE devices.

- Wire sheet outputs require no special handling. The same Network Output block can be used on the wire sheet to send information out to a display as well as over BACnet to another SLATE device if needed. Additionally any module register value (not only the Network registers) can be shared with other SLATE devices on a network. To do this, registers to be shared over com must be visible to the network.

To make modules visible to the network:

NOTE: NetworkInput, NetworkSetpoint, and NetworkOutput registers are set to "visible" by default while all other registers are set to "hidden".

- Open the station.
- Connect to the station with username/password.
- Select the SLATE device to work on.
- Click the “Network Visibility” button.
• Click the “Configure Network Visibility” button.

![Network Visibility Configuration Interface]

• Locate the register(s) whose data needs to be shared over the network.

![Registered Network Visibility Table]

• To make the register(s) visible over the network, first uncheck the Protect Mode box then select the register(s) to be made visible then select the blank view in the “Hidden” column. Click the “Save” button when finished.

![Visible Register Selection Interface]
Once all of the key registers are visible to the network, the next step is to enable the BACnet network on the SLATE Base modules. If connected to a display or a computer on the same subnet as the SLATE devices, follow the procedure below to enable the BACnet network:

- Open the Generic pages on the SLATE device to be configured. Click on “Module Pages” then the “BASE” module.

- Click on the “Communication Setup” button.

- Click the “BACnet” tab.
The required fields to fill out are Device Object Instance, Ethernet Configuration, and MAC Address, depending on the protocol needed/used. If using BACnet over Ethernet, fill out the Device Object Instance field (NOTE: each SLATE device must have a unique instance number) and the Ethernet Configuration which in this application of SLATE devices communicating to other SLATE devices on the same network, will be either “Plain BACnet/IP” or “BACnet/Ethernet”. All configured SLATE devices on the network must use the same Ethernet configuration.

If networking over RS-485, select “BACnet MS/TP” in the lower left hand section of the page. Assign a distinct MAC address to each SLATE device in the network. All configured SLATE devices on the network must use the same Ethernet configuration.

Setting up BACnet communication over Plain BACnet/IP or BACnet/Ethernet from the SLATE Base menu:

- On the SLATE Base module, click the “Menu” button.
- Using the up/down arrows, move to “Base setup” and click the “OK” button on the SLATE Base module.
- Using the up/down arrows, move to “Network” and click the “OK” button on the SLATE Base module.
- Using the up/down arrows, move to “Ethernet” and click the “OK” button on the SLATE Base module.
- Using the up/down arrows, move to “BACnet” and click the “OK” button on the SLATE Base module.
- Using the up/down, left/right arrows, select the connectivity protocol and move to OK on the screen and click the “OK” button on the SLATE Base module.
Setting up BACnet communication over RS-485 from the SLATE Base menu:

- On the SLATE Base module, click the “Menu” button.
- Using the up/down arrows, move to “Base setup” and click the “OK” button on the SLATE Base module.
- Using the up/down arrows, move to “Network” and click the “OK” button on the SLATE Base module.
- Using the up/down arrows, move to “RS-485” and click the “OK” button on the SLATE Base module.
- Using the up/down arrows, move to “Configuration” and click the “OK” button on the SLATE Base module.
- Using the left/right arrows, move to “MS/TP” then using the up/down arrows move to “YES” to confirm selection and click the “OK” button on the SLATE Base module.
- Using the up/down arrows, move to “MS/TP address” and click the “OK” button on the SLATE Base module.
- Using the up/down, left/right arrows select a unique MS/TP address number for the SLATE device then move to “YES” to confirm selection and click the “OK” button.

The SLATE Base is now configured to communicate over BACnet using the selected protocol.

NOTE: Make sure the other SLATE Base modules are set up using the same protocol.

NOTE: Make sure all SLATE modules required to communicate with each other over Ethernet are set up on the same subnet. The IP address is configured using the SLATE Base menu:
Menu: Base Setup/Network/Ethernet:
Scroll to “IP addr” and set up the subnet making sure no two SLATE devices have the same IP address, i.e. terminate in the same 3 digits. (i.e. SLATE device 1 IP address: 192.168.92.10; SLATE device 2 IP address: 192.168.92.20).

Wire Sheet

Data coming into a wire sheet from another SLATE module must come into a BACnet binding register. Twenty such registers exist for each SLATE device. These registers are intended to facilitate SLATE systems communicating to each other in a peer to peer fashion. They can also be considered as “hooks” for planned data from other yet un-configured SLATE devices, needed by the wire sheet. These “hooks” will then be configured to point to the source of the data that is required for that input on the wire sheet.

The following example shows how a BACnet binding register is used to collect data from a sensor that is physically wired to another SLATE device. This sensor value is used to create a temperature controller which will close a relay when the sensor value drops below that of the setpoint.

- Select a Modulating Input block from the Physical Points category in the palette. (registers are accessed from the Physical Points input/output folder)
- Name the block (“Sensor_Value” is used in this example)
- Select the Feature Type from the drop down menu. The BACnet binding registers are found in the “Module status register input” group starting with register 302. Information about the BACnet message quality as well as the actual register value is found in this register grouping.
- BACnet binding registers are located in the Base module. Select “Base” for the Module category.
- In this example, the first BACnet binding register will be used. Select “r302: BACnet bind 1 data”. Click the “OK” when finished.
Next, select the Network Set Point block from the Software Points category in the palette. This block will be used to enter the control setpoint. Name and configure as needed for degrees F or degrees C and enter a default value as desired. In this example, this block is named “Setpoint” and the default value is left at 0F.

Next, select a Compare block from the Analog category in the palette, configure as needed and link to the “Sensor_Value” and “Setpoint” blocks.

Next, select a Binary Output block from the Physical Points category in the palette. This will be the relay which reacts when the sensor value drops below that of the setpoint. Name the block. In this example the relay is named “Demand”.

This brief wire sheet example shows primarily how to set up the BACnet register which is key when multiple SLATE devices are communicating with each other. The placeholder for the sensor information is now embedded in the wire sheet.

It is assumed that another wire sheet belonging to the other SLATE device is set up to read the physical signal from the temperature sensor.
It is also assumed the desired networking is complete (either network cables through a switch or RS-485 connected between SLATE devices).

Continuing with the example, let’s assume that SLATE device 2 has the sensor value and SLATE device 1 needs the value to control the demand (see wire sheet above).

We also assume the wire sheets of each SLATE device has been completed and a kit has been created and loaded into each SLATE device.

The last step in completing the communication connection between SLATE devices 1 and 2 is to configure the BACnet binding using the Generic page via an HMI. This step configures the BACnet binding registers to retrieve their data from the correct SLATE device, specify proper data type and retrieve the proper Object ID (which maps to the register within the SLATE device which has the required data).
Continuing on from the Module/Base Generic pages, click the “BACnet Binding” button.

The BACnet Binding page is where BACnet binding registers used in the wire sheet are directed in order to receive the information required.
In the example in this document, SLATE device 1 is looking for temperature data from SLATE device 2. The BACnet binding register used on the wire sheet for SLATE device 1 was the first of the 20 (r302: BACnet bind 1 data). This is the location (wire sheet block) the temperature information will enter the wire sheet.

Next, the SLATE device 1 is directed to the other SLATE device on the network that has the information needed. In this case, SLATE device 2 has the temperature data needed by SLATE device 1. Additionally, the data type is needed as well as the Object ID in SLATE device 2 which contains the temperature value. This information is written in a specific format in the Setup field.

Setup field command format:

- Device=X (X represents the SLATE device with the needed data)
- “|” (this is the key above the Enter key on a N.A. keyboard: shift + keys).
- Data type (Analog Value (AV), Analog Output (AO), etc.) followed by a dash.
- BACnet Object ID (the Object ID maps to the register in the target SLATE device which contains the desired data).
Both the Data type and Bacnet Object ID can be found on the same report in Niagara AX. Since the needed data is found in SLATE device 2, we need to open that device to see the BACnet report.

- Click the “BACnet Interface Report” button to access the Object ID and BACnet Type data

- From the report, we can see the Temperature data for SLATE device 2 is mapped to Object ID 115 and the BACnet data type is Analog Value (AV).
Returning to the BACnet Binding page, the BACnet bind 1 data and the status of the message can be seen in the Live Status field.

In this example, SLATE Device 1 will receive a temperature value of 114F from SLATE device 2 which enters the wire sheet through the “Sensor_Value” block.

Data transfer between SLATE devices will continue as long as the network is enabled and the SLATE devices are in working condition. Each SLATE device will process its new data at one second intervals.
For More Information

The Honeywell Thermal Solutions family of products includes Honeywell Combustion Safety, Honeywell Combustion Service, Eclipse, Exothermics, Hauck, Kromschröder and Maxon. To learn more about our products, visit www.ThermalSolutions.honeywell.com or contact your Honeywell Sales Engineer.

Honeywell Process Solutions

1250 West Sam Houston Parkway South
Houston, TX 77042

Honeywell House, Skimped Hill Lane
Bracknell, Berkshire, England RG12 1EB UK

Building #1, 555 Huanke Road,
Zhangjiang Hi-Tech Industrial Park,
Pudong New Area, Shanghai 201203

www.honeywellprocess.com

Honeywell makes no warranties or representations, expressed or implied, regarding the information contained in this document. While Honeywell believes the information herein is accurate, such information is provided “as is” and any use of this information by the recipient is at the recipient’s sole risk.